THE TRANSVERSE MOTION OF SOLID PARTICLES
IN A FLOW WITH FLUCTUATING SHEAR

V.V, Orlov UDC 532,.529.5

We calculate the specific lift which must be experienced by a spherical particle with density
different from that of the fluid, in a flow with fluctuating shear.

A golid particle in a shear flow (i.e., when the longitudinal velocity has a transverse gradient) moves
with the fluid and at the same time rotates; in turn its rotafion gives rise to a definite perturbation of the
flow about the particle, The interaction between the rotation of the particle and the fluid surrounding it,
and the fundamental flow can give rise, as many observations [1-3] show, to a transverse motion of the par-
ticle so that its trajectory deviates from the streamline of the unperturbed flow,

This effect depends on a whole series of factors — the shape and deformability of the particle, the
velocity profile of the unperturbed flow, whether or not the flow is steady, the wall effect, etc, The number
of different combinations of these factors is extremely great; hence in the literature only a limited number
of different cases is discussed or studied experimentally,

Thus, the effect of the transverse displacement of rigid spherical particles in the flow of a non-New-
tonian fluid was discussed in [4], while that of deformable particles in a Newtonian fluid was considered in

[51.

Even if we restrict ourselves to the consideration of only rigid spherical particles in a Newtonian
fluid, there are many combinations of the different factors, each of which must be considered separately;
first we have to distinguish the cases when the regultant force F and moment M on the particle from the
fluid are zero or nonzero, Analysis of experimental results shows that we also have to take into account
the Reynolds number for the relative motion of the particle, defined as Rep = Va /v, and the relative distance
from the wall y/a,

Theoretical calculations were made in [6] of the drag, lift, and moment of the forces on a spherical
particle for Re, <« 1; this is the case, when F, M = 0, y/a—«, An approximate solution was obtained by
representmg the velocity and pressure fields as series in powers of Reyp, retaining only terms in (Rep)0
and (Re,y)!. The solution was constructed separately for the region near the surface of the sphere (in the
variables xl/a) and for the region x;/a > 1 (in the variables X; = Re (xl/a)) with subsequent matching of
the asymptotic expressions for both regions, For the lift on a sphere moving with translational velocity V'
and rotating with angular velocity @ with respect to the fluid an expression of the form

F]_:CLpf a3[§><7], (1)
was obtained where CL =T,

Although (1) was obtained for the rotation of a sphere in an unbounded quiescent fluid and M = 0, the
authors of [6] assume that it can be applied to the case of the rotation of a particle in a shear flow with
equilibrium (i.e., when M = 0) velocity Qp,

An approximate solution was obtained in [7] for the 1ift on a freely rotating (M = 0) sphere in a flow
with linear velocity profile (Kutta flow); in this case also an expansion in a series in powers of (1/¥) was
used, retaining terms of zero order and of the first power:
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Fp=81,20ra2(vij)2 [ | x V], @)

where V is the velocity of the sphere with respect to the fluid (on a streamline passing through the center
of the sphere); j = k.dUy/dy is the shear,

Although the approximate method used in [7] can give rise to objections, simple experiments conform
to an equation of the form (1), Thus, in [1] M = 0, F = 0) it was found that Cy, ~ 18 for @ = 0,075 cm, Re,,
= 0,08 and y/a > 4. The rotational velocity of the particle was measured directly and was equal to the theo-
retical value (for creeping flows)
Q) = 12dU /dy.
The lift for the case M = 0 was also measured in [8], but the data are for large Rep and small relative
distances from the wall,

A weak transverse digplacement of solid spherical particles was also detected for the case F, M = 0
[9]. Evidently this effect depends on the curvature of the velocity profile, d®Uy/dy? [10].

Unsteadiness of the fluid flow can also lead to the appearance of transverse forces on the particle.
Below we consider the motion of a solid spherical particle in a fluctuating Kutta flow, Such a flow is an
approximate model of the viscous sublayer of a turbulent flow where the shear stress fluctuations reach
30% of the average [11]. Inthese cases a solid particle with Pp # pf experiences translational and rotational
oscillatory motions shifted in phase with respect to these motions of the fluid; simultaneous translational
and rotational motion of the particle with resgpect to the fluid leads to the appearance of lift,

To calculate this effect (see below) we assume that the Reynolds number for the relative motion is
small so that, as shown in [6], the force and moment of the forces on the particle can be calculated from
the corresponding equations for creeping flow,

The unperturbed flow of the fluid in the direction of the x-axis is described by the equation
Up = ugsinot + o (y— ) sinof. @)
Then the solid particle also oscillates in translation, but shifted in phase
Up= upsin (ot + ay), @)

the amplitude and phase shift «, being given by the following equations:

up _ [ 1+ )”2 SO T e o ¥ 77 5)
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g oy ﬁ[32v+1 py—1

where
B = 2 €Mandyzﬁl,
9 U pf

and the approximate equality is valid for a small phase shift, As the spherical particle rotates in the un-
bounded fluid the moment of the forces on the particle is

M = 8npa® (Qf — Q). 0
For a shear flow it is assumed that
M = — 8aua® (Qp— Qe), (8)

where Qg is the equilibrium velocity of rotation of the solid particle in a flow with shear j, where Qg = j/2
[1]. Then for the rotational oscillations of the particle due to the shear fluctuations j,sinwt we can derive
amplitude and phase equations similar to (5) and (6):

tga, ~~ ——— —Fp = — —Py,. {9)

Then, by (1), and after time-averaging (for small phase shifts, i.e,,f < 1)
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Fr ~ 21 Cr oy VB (11)

Ps 160 = g

Estimates of the values shows that for sufficiently large particles (@ ~ 30-40 p) at high frequency

@ ~ 10% sec~!) and with jo ~ 10° sec™l, ug ~ 15 cm/sec (which corresponds to conditions at the outer bound-
ary of the viscous sublayer when V, ~ 6 ecm/sec) the 1ift may exceed the weight of the particle many times,
i.e., give rise to suspension of the dispersed phase,

NOTATION

are the force and moment of the drag forces;

is the lift;

are the translational and rotational velocity of the particle with respect to the fluid;
is the absolute velocity;

Qps O are the absolute angular velocity of the particle and of the fluid;
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are the particle and fluid densities;

is the dynamic viscosity;

is the shear;

is the radius of solid particle;

is the distance of the center of the particle from the solid wall;

is the frequency of fluctuations;

is the dynamic velocity (friction velocity);

is the Reynolds number for the relative velocity and radius of the particle;
is the acceleration due to gravity,
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